Total Variation and Wavelet Regularization of Orientation Distribution Functions in Diffusion Mri
نویسندگان
چکیده
We introduce a variational model and a numerical method for simultaneous ODF smoothing and reconstruction. The model uses the sparsity of MR images in finite difference domain and wavelet domain as the spatial regularization means in ODF’s reconstruction. The model also incorporates angular regularization using Laplace-Beltrami operator on the unit sphere. A primal-dual scheme is applied to solve the model efficiently. The experimental results indicate that with spatial and angular regularization in the process of reconstruction, we can get better directional structures of reconstructed ODFs.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملOn the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs
Soft wavelet shrinkage, total variation (TV) diffusion, TV regularization, and a dynamical system called SIDEs are four useful techniques for discontinuity preserving denoising of signals and images. In this paper we investigate under which circumstances these methods are equivalent in the one-dimensional case. First, we prove that Haar wavelet shrinkage on a single scale is equivalent to a sin...
متن کامل3D Inversion of Magnetic Data through Wavelet based Regularization Method
This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...
متن کاملApplying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems
In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کامل